
VIRUS BULLETIN www.virusbtn.com

4 SEPTEMBER 2008

PROPHET AND LOSS
Peter Ferrie
Microsoft, USA

The release of the long-delayed EOF-rRlf-DoomRiderz
virus zine probably marks the last of its kind. While the
quality is not terribly high, there are some viruses of
interest. A series of analyses in alphabetical order begins
with this one: W32/Divino.

I’M A LOCAL
The virus begins by storing the selector of the local
descriptor table in the ImageBase fi eld in the PEB, and
then reading four bytes and checking if the result is
non-zero. A non-zero result should always occur, because
the top half of the ImageBase fi eld will remain untouched
and non-zero. This might be an anti-emulator trick for an
emulator that stores four bytes instead of two. However, it
seems more likely that what the virus author had in mind
was to read only two bytes and detect whether the local
descriptor table (LDT) is in use, but had to reverse the
condition because of the extra bytes that the virus reads.
The use of the LDT is a characteristic of virtual machines
such as VMware and VirtualPC, along with Norman’s
SandBox.

In any case, if the result is zero, the virus attempts to
continue execution, but without decrypting itself fi rst.
When that happens, the virus crashes and the application
terminates. If the result is non-zero, then the virus decrypts
the fi rst stage of its body and attempts to transfer control
to it, using an address that was calculated from values
in the PE header at the time of infection. This means
that the virus is not aware of ‘Address Space Layout
Randomization’ (ASLR). If the infected fi le was built to be
ASLR-aware, then the virus will crash and the application
will terminate.

UN-SafeSEH
The fi rst stage of the virus registers a structured exception
handler, then intentionally causes an exception. This is an
old anti-debugging trick which any good debugger can skip
easily enough. Since the handler appears immediately after
the call to the anti-debugging routine, it’s a simple matter
to step over the call and continue execution. However, the
virus is not aware of ‘SafeSEH’, which overrides the legacy
structured exception handling. If the infected fi le was built
with SafeSEH, then the exception that the virus raises will
cause the application to exit, because the exception address
will not match any known address.

The virus unregisters the handler, copies a decryptor to
the stack, and then attempts to execute the decryptor from
there. The virus is not aware of ‘Data Execution Protection’
(DEP). If the infected fi le was built to be DEP-aware, then
the virus will crash and the application will terminate.

BYTE, BYTE BABY
The virus retrieves an address from the stack that points
within the kernel32 BaseThreadInitThunk() function. Using
this as a starting point, the virus performs a brute-force
search in memory for the ‘MZ’ header. The search is
performed byte by byte, rather than on 64 KB boundaries,
making it slow and ineffi cient. The virus does not register a
structured exception handler for this operation. As a result,
the technique fails on Windows Vista64. This is because
the kernel32.dll in Windows Vista64 uses a 64 KB section
alignment, so the region between the fi le header and the fi rst
section is not mapped. Any attempt to access this memory
will cause an exception which is not intercepted by the
virus. If an exception occurs, the virus will crash and the
application will terminate.

ONWARD AND FORWARD
In the event that everything is okay, the virus calculates a
pointer 4 KB below the current stack pointer value. The virus
author assumed that it would remain untouched but this is not
always the case, as we will see below. The virus resolves a set
of API addresses from kernel32.dll that are required to infect
fi les. The resolver uses checksums instead of names. The
list includes GetLastError(), but this is never used. In fact,
almost one third of the APIs that are resolved are not used.
The reason for not using GetLastError() is clear. It is because
on Windows XP, the function is forwarded to ntdll.dll, so
the address that is exported from kernel32.dll does not point
directly to the function. The lack of forwarding support is a
common problem for export resolvers in virus code, though
the problem is not limited to viruses. There are many runtime
packers that also use the checksum technique, which also
do not support export forwarding. The reason for not using
some of the other APIs is less clear, but the fact that some
of them would be used to start a new process and watch its
execution suggests that an alternative spreading mechanism
was planned but not implemented.

The virus resolves a set of API addresses from ws2_32.dll,
some of which will be used to perform a denial-of-service
attack as part of the payload. Some of the APIs are not used,
but could be used to form the basis for a remote control
mechanism, or perhaps an auto-updating capability which
may also have been planned but not implemented. The virus
also resolves a set of API addresses from shell32.dll and

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5SEPTEMBER 2008

user32.dll, which will be used to perform some actions on
the clipboard.

HANGING BY A THREAD
At this point, the virus copies back the bytes replaced by the
fi rst decryptor and creates a thread to run the host code. This
allows the virus to achieve per-process residency, however
this behaviour can be considered a bug. The problem is that
if the host code terminates, the virus code will be forcibly
terminated, too. This can result in an interrupted infection
and a corrupted fi le.

The virus retrieves the fi rst four bytes of the
GetProcAddress() function and compares it to the ‘enter
0,2’ instruction. The virus wants to exit if there is a match.
This might be an anti-emulator detection. However,
since the ‘enter’ instruction is only three bytes long, the
comparison will probably always fail. This behaviour
appears to be a bug.

IT’S PAYBACK
The virus carries a payload whose trigger is the execution
of an infected fi le on the 28th day of any month. The date is
acquired by allocating a buffer requesting the date format,
then comparing the contents to ‘28’. There is a bug in this
routine, however, which is that the buffer is never freed.

The payload exists in two parts. The fi rst part of the payload
displays a message box. The message title is the two-digit
date, so it is always ‘28’. The message body is:
Win32.Divinorum

Code By Fakedminded/EOF-Project

Mikko cut ur ponytail!

The ‘Mikko’ in the text is presumed to be a reference to
F-Secure’s Mikko Hyppönen, who happens to wear his hair
long.

The second part of the payload attempts to perform
a denial-of-service attack on F-Secure’s European
website. However, now the stack problem appears.
The IsValidLocale() function, which is used by the
MessageBox() function, uses so much of the stack on
Windows Vista that it corrupts the API table. The result is
that on Windows Vista the rest of the payload crashes, and
the application terminates.

The virus author appears to be aware of the general
problem, since the WSASocket() function also requires a lot
of stack, but the virus saves and restores the stack state in
order to survive that call.

The denial-of-service attack is effectively limitless, since it
uses a ‘loop’ instruction which relies implicitly on the value

in the ecx register. The ecx register is set as a side effect
of the call to the Sleep() function. The value is the return
address of the call to the EH_epilog() function, which is
always greater than 1.

WINNERS AND LOSERS

The virus allocates some memory to hold the current
directory name. Another bug exists here, however, which is
that the buffer is never freed. The virus retrieves the current
directory, and compares the fi rst four bytes with ‘WIN’ and
‘win’. The virus author intended to avoid the ‘%windir%’
directory, which is by default ‘WINNT’ on Windows NT and
Windows 2000, and ‘WINDOWS’ for all other platforms.
However, there is a bug in the comparison: by comparing
four bytes against a three-byte string, the only names that
can match are ‘WIN’ and ‘win’.

The virus searches within the current directory for all fi les
with the ‘.exe’ suffi x. For each fi le that is found, the virus
opens it and reads the entire fi le into memory, regardless of
how large it is. The virus searches within the entire fi le for
the ‘msco’ string. This is intended to match ‘mscorlib.dll’
and similar strings, to avoid the infection of Microsoft .NET
framework fi les. There are simpler ways to detect such fi les,
of course, such as the presence of the CLR Runtime Header
Data Directory.

Only now does the virus check for the ‘MZ’ and ‘PE’
signatures within the fi le. Another bug exists here, which
is that the ‘PE’ signature comparison is incomplete. The
true signature is four bytes long, but the virus checks for
only the fi rst two bytes. While it is unlikely that any DOS
programs contain such a signature, the possibility exists,
and the virus might attempt to infect one as a result.

CHECKS AND BALANCES

The virus performs some simple checks to see if the fi le can
be infected, however these checks are insuffi cient. The virus
checks if the virtual size of the entrypoint section is zero,
and if there is suffi cient space to add a new section header.
The fi le will not be infected if either of these checks fail. In
the case of a section with a virtual size of zero, the physical
size should be used instead – perhaps the virus author was
not aware of this.

The virus does not check for 64-bit format fi les. As a result,
such fi les will be infected, but incorrectly. The structure
is not damaged, but the virus calculates some absolute
addresses using the ImageBase fi eld in the PE header, and
in 64-bit fi les the fi eld is 64 bits large and begins four bytes
earlier. The result is that the top four bytes of the ImageBase
are referenced instead.

VIRUS BULLETIN www.virusbtn.com

6 SEPTEMBER 2008

The check for suffi cient space for the section header is not
quite correct either. The virus author intended to check
whether there are 40 individual bytes available, but the virus
compares four bytes at a time while advancing one byte at
a time. The result is a check for three bytes more than is
required.

If there is suffi cient space to add a new section header, then
the virus appends a new section to the fi le, and changes
the original section names to ‘UPXn’, where ‘n’ is an
increasing single-digit number. However, the new section is
always named ‘UPX0’. The virus fi lls with ‘FF’ values any
remaining space after the new section header. This serves as
the infection marker, since now it will appear that there is
no space for another section.

REALLY ‘NO EXECUTE’
The virus replaces completely the characteristics for the
entrypoint section. It changes them to read/write/init, and
does the same for the newly added section. This act is not
compatible with DEP, since without the Executable fl ag set
in the section header, the contents of the sections cannot be
executed on platforms that support DEP.

The new section header states that the section begins
immediately after the last section in the fi le. The virus
checks for data that are appended outside of the image,
but the check is for the presence of at least 10,000 bytes.
Anything smaller than that, such as debug information, will
be ignored by the virus. The virus makes some adjustments
to the PE header, then writes the entire fi le back to the
disk. At this point, the virus seeks the location of the host
entrypoint and writes the fi rst decryptor.

The virus allocates a buffer to hold a copy of the virus body,
then copies itself to the buffer and encrypts the copy. Yet
another bug exists here, which is that a buffer is allocated
for each fi le to infect, but it is never freed. The result can be
a very large allocation of memory if there are a lot of fi les.

The virus then seeks to the end of the fi le and writes the
encrypted virus body. If there are appended data after the
original last section, then they will be ‘sandwiched’ between
the image and the virus body.

The infection is now complete, and the virus searches for
another fi le and repeats the infection process. Once all fi les
have been examined, the virus steps up one directory level and
repeats the process, including the stepping, twice. Thus, the
virus infects the current directory and two directories above it.

REMOVERS AND SHAKERS
After infecting the nearby fi les, the virus allocates several
buffers in preparation for the fi nal stage. As before, these

buffers are never freed. The virus retrieves the list of
drive letters. It skips the ‘A:’ drive, then looks for drive
letters that represent removable media. There is a bug in
the enumeration, which is that to determine when the end
of the list is reached, the virus checks one byte after the
current position. The correct behaviour is to check the byte
in the current position, because if a debug heap is active,
one byte after the current position is the beginning of the
‘BAADFOOD’ sequence, which continues to the end of
the buffer.

If a removable drive is found, then the virus copies itself to
the root directory of the drive, as ‘driver_setup.exe’. After
a short delay, the virus creates an ‘autorun.ini’ in the root
directory of the drive, which contains a reference to the
‘driver_setup.exe’.

CLIP GO THE SHEARS
The virus queries the clipboard for objects that are in the
process of being copied. For each such object, the virus
queries its fi le attributes. A bug exists here, which is that
the virus author did not seem to realize that attributes
can be combined. The virus wants to avoid directories
and read-only fi les, but this is only successful if only
those attributes are set. However, if a fi le has read-only
and system attributes set, for example, or if a directory is
hidden, then the virus will assume that both of those cases
describe fi les.

If a fi le is found, then the virus will remove the fi lename
from the path to produce a directory. If a directory is found,
then the virus will call the infection and stepping routine to
infect the nearby fi les.

The clipboard query returns the number of objects on the
clipboard, and the virus is aware of this, but there is some
missing code which would be used to enumerate these
objects. Instead, only the fi rst object is examined, and a
value is left on the stack.

After the virus examines the fi rst object on the clipboard,
the virus repeats the dropper and clipboard procedures,
beginning with the retrieval of the drive letters. However, a
value is left on the stack each time that part of the code is
reached, eventually resulting in a stack fault. This causes the
virus to crash and the application to be terminated.

CONCLUSION
The virus author wanted to call this virus ‘Divinorum’,
which means ‘diviner’, someone who can predict something
about the future. Here’s my prediction: your talents will be
recognized and suitably rewarded.

Now read that again.

